COIN:人工智能ChatGPT之于Web3的几点思考_MET

人工智能?AI?有人热情膜拜,有人畏惧如虎,AI?的发展已经进入高层面的快车道,技术更新迭代日新夜异,技术无罪也无善恶,曾经科幻未来的人机交流,共生共存如今在我们的脑海中已经有了轮廓的意识感想,科技是第一生产力,无人能脱离科技之外。

最新的聊天?AI-ChatGPT?一经上线就引爆了科技狂徒和?AI?探索爱好者的热情,不到一周用户新增过100?万,在与?AI?聊天中写代码,文档需求,感情治疗和离奇怪论成了搜索热榜,很多人陷入?ChatGPT?疯狂回答的循环中,就连其创始人之一的埃隆.马斯克也不禁感叹:我们离强大而危险的人工智能不远了。

ChatGPT?有什么神奇魔法,吸引这么多人疯狂传播?

ChatGPT?发展历程

GenerativePre-trainedTransformer,是一种基于互联网可用数据训练的文本生成深度学习模型。它用于问答、文本摘要生成、机器翻译、分类、代码生成和对话AI。

2018?年,GPT-1?诞生,这一年也是?NLP的预训练模型元年。性能方面,GPT-1?有着一定的泛化能力,能够用于和监督任务无关的?NLP?任务中。

七国集团部长同意对人工智能采取“基于风险”的监管:金色财经报道,七国集团(G7)数字与技术部长会议的参会者4月30日同意对人工智能采取“基于风险”的监管。但七国集团部长同时表示,此类监管还应为人工智能技术的发展“保持开放和有利的环境”。[2023/4/30 14:35:56]

虽然?GPT-1?在未经调试的任务上有一些效果,但其泛化能力远低于经过微调的有监督任务,因此?GPT-1?只能算得上一个还算不错的语言理解工具而非对话式?AI。

2019?年?GPT-2?发布,不过,GPT-2?并没有对原有的网络进行过多的结构创新与设计,只使用了更多的网络参数与更大的数据集:最大模型共计?48?层,参数量达?15?亿,学习目标则使用无监督预训练模型做有监督任务。

在性能方面,除了理解能力外,GPT-2?在生成方面第一次表现出了强大的天赋:阅读摘要、聊天、续写、编故事,甚至生成假新闻、钓鱼邮件或在网上进行角色扮演通通不在话下。在“变得更大”之后,GPT-2?的确展现出了普适而强大的能力,并在多个特定的语言建模任务上实现了彼时的最佳性能。

Blur公布代币经济模型:51%分配给社区,核心贡献者、投资者和顾问分别获得29%、19%和1%:金色财经报道,Blur公布代币经济模型:BLUR代币用于社区治理,有权控制协议的价值累计和分配,治理权力还包括设置半年后的协议费用(最高2.5%),发放社区补助金。BLUR总供应量30亿枚,51%分配给社区,29%给过去和未来的核心贡献者(为期4年分配,在前4个月有转移额度释放),19%给投资者(为期4年分配,在前4个月有转移额度释放),1%给顾问(在4-5年分配,并有4-16个月的线性释放)。其中,分配给社区的51%中,3.6亿枚(12%)用于本次空投,剩余11.7亿枚(39%)可通过贡献者补助、社区倡议和激励计划分配给社区。这39%中的10%(1.17亿)已被确认用于下一次激励的发放。根据计划,这11.7亿枚将在第一年分配40%,第二年分配30%,第三年分配20%,第四年分配10%。[2023/2/15 12:07:37]

2020?年?5?月,OpenAI?发布了?GPT-3?,这个模型包含的参数比?GPT-2?多了两个数量级,它比?GPT-2?有了极大的改进。

人工智能项目Fetch.ai宣布跨链计划,将利用Cosmos IBC提供跨链服务:人工智能区块链项目Fetch.ai (FET)宣布将进行跨链服务升级,未来的Fetch 2.0主网将通过Cosmos Hub的IBC网桥实现跨链功能,从而实现向其他区块链网络提供机器学习服务。此外,Fetch.ai虚拟机将于本周在测试网上进行升级,新的FET虚拟机将基于 WebAssembly,聚集性能表现,Fetch.ai团队还将提供新的技术文档,帮助开发人员能够为迁移到活动网络做准备。[2020/7/21]

GPT-3?在许多?NLP?数据集上都取得了很强的性能,包括翻译、问题回答和?cloze?任务,以及一些需要即时推理或领域适应的任务,如在句子中使用一个新词或执行?3?位数运算。GPT-3?可以生成人类评估人员难以区分的新闻文章样本。

2022?年初,OpenAI?发布了?InstructGPT,这是一个经过微调的新版本?GPT-3?,可以将有害的、不真实的和有偏差的输出最小化。上线后?InstructGPT?更名为?Chatgpt。

声音 | 济南市市长:济南片区正探索实施区块链人工智能审批等政务服务新模式:济南市市长孙述涛表示,以自贸区济南片区为例,自启动建设以来,就肩负起“替国家试制度、为地方谋发展”的历史使命,目前探索实施区块链人工智能审批等多项政务服务新模式,海关27条、金融20条、税收服务21条、市场监管22条、规划和用地管理意见等一系列操作性强、含金量足的创新政策措施为全国自贸区建设提供了有益的借鉴和参考。(大众日报)[2020/1/21]

未来还会有更为强大的?GPT-4??是的,OpenAI?也曾经提出?GPT-4?的报告,它能够通过图灵测试,并且能够先进到和人类没有区别,除此之外,企业引进?GPT-4?的成本也将大规模下降。

ChatGPT?火爆现象的解析

OpenAI?官方称,ChatGPT?是在人类的帮助下创建并训练的,人类训练师对该?AI?早期版本回答查询的方式进行排名和评级。然后,这些信息被反馈到系统中,系统会根据训练师的偏好来调整答案——这是一种训练人工智能的标准方法,被称为强化学习。

声音 | 中央党校陈江生:当前以人工智能、物联网、区块链为代表的新一代信息技术加速突破应用:9月12日,中央党校(国家行政学院)马克思主义学院副院长、教授陈江生发表文章《科学把握重要战略机遇期的新内涵》。世界正面临新一轮科技革命和产业变革的冲击。纵观人类社会历史的发展进程,科技始终是第一生产力,为人类文明的进步提供了不竭的动力。人类曾经历农业文明、工业文明的飞跃,带来了社会生产力的极大提高,改变了世界发展的进程。当前,随着社会发展与时代进步,以人工智能、量子信息、移动通信、物联网、区块链为代表的新一代信息技术加速突破应用,以合成生物学、基因编辑、脑科学、再生医学等为代表的生命科学领域孕育新的变革,融合机器人、数字化、新材料的先进制造技术正在加速推进制造业向智能化、服务化、绿色化转型,以清洁高效可持续为目标的能源技术加速发展将引发全球能源变革,空间和海洋技术正在拓展人类生存发展新疆域。[2019/9/12]

为了创建一个用于强化学习的奖励模型,OpenAI?也需要收集比较数据,其中包括两个或更多按质量排名的模型回复。

为了收集这些数据,OpenAI?收集了?AI?培训师与聊天机器人的对话,并随机选择了一个模型编写的消息,抽查了几个备选的回复,再让?AI?培训师对这些回复进行排名。

此外,利用这些奖励模型,这项研究使用近似策略优化算法对模型进行微调,并对这个过程进行了多次迭代。

ChatGPT?的火热突显了我们作为传统知识获取渠道的颠覆和便捷,过去知识的传播在于集中式被动授取,过程无聊且波动浮点过大,有好有坏,良莠不齐,ChatGPT?让我们看到了未来新的学习链:数据库+AI?筛选+用户需求.

AI?靠海量算力学习到海量的跨领域知识,虽然不够精确,却能大大节省人类通过“视觉+大脑”的读书培训认知时间消耗,如果能通过算法来识别答案正确与否,AI?将成为人类的全知导师、生产助手。

ChatGPT?存在哪些局限性

体验过?ChatGPT?的用户普遍反映目前?AI?聊天反馈内容信息不准确,有时会给出看上去正确但荒谬的答案、微调提问的方式会得到完全不同的答案、有时会反复使用某些句子,甚至提供了混乱的信息,拥有经历和专业知识的人一眼就看到其中的错误。

这些局限性具体表现为:

在训练的强化学习阶段,没有真相和问题标准答案的具体来源,来答复你的问题。

训练模型更加谨慎,可能会拒绝回答

监督训练可能会误导/偏向模型倾向于知道理想的答案,而不是模型生成一组随机的响应并且只有人类评论者选择好的/排名靠前的响应

ChatGPT?之于Web3的思考

ChatGPT?在寻找答案、解决问题的效率上已经部分超越了如今的搜索引擎,ChatGPT?或许在未来会改变我们获取信息、输出内容的方式,Web3对于?ChatGPT?都有哪些需求?

浅层需求

项目社群搜索:点对库精准需求筛选,可以提高赛道分类的选择效率,在精力分配上着重于热点和熟悉领域。

排名价格追踪:排名和价格在市场的不同阶段都存在浮动值和大变革,因个人需求和使用习惯无法追随各个交易所和平台的数据海洋,准确的内容输出加大了用户对数据的粘性。

知识分享:知识阶段的跨栏一般需要个人的勤劳和热情去突破,不同社群和内容的分类导致新群体用户的沉重感,先驱者们无法抽身高效传授经验,精准化内容输出能改变传统知识获取渠道。

AMA?问答:项目路线图,白皮书,关键人物活动内容在?AMA?的问答式中能快速掌握,在项目和社区的开展都能面向更多不同的用户群体,在社区品牌?IP?的传播上起到?AI?客服功能。

需求指导预测:数据的对比筛选的结果远超个人情绪波动,数据能明确个人需求内容,并在不同段提升或减少资产账面,预测市场环境及未来走势,明显丰富的数据更能把握决定。

深度思考

Web3内容生产:稳定准确的正向内容产出目前是Web3急需的,Web3宏大的世界里仅靠专业内容生产者提供服务内容显得比较单薄且缓慢,AI?在内容输出的较率和稳定性上将远超个人,无论是内容质量,画面呈现和沟通效率上。

智能合约布署和安全审计:AI?在代码的构造上利用数据库的完整可以提供专业的开发参考范本和校验检查,当然在智能合约的开发上却不可完全依赖?AI?的程序式输出,毕竟独立项目的需求在于个人,不过安全审计是个反复检测和寻找漏洞修复的过程,AI?在利用数据的对比和筛查中能随时起到提醒和纠错的功能。

虚拟机升级:Web3使用区块链技术,而区块链的封闭特性无法及时反映外部信息,虚拟机的出现解决了将链外数据传输链内的空缺,但虚拟机提供数据的准确性和产生的信任感却得不到合理有效的验证时,AI?在这方面或许能改变其工作方式。

人才的流动和积累:Web3是下一代技术的全面升级,需要的区块链人才广泛且专业,但现在人才普遍沉淀于传统行业,在招聘和交流上,经常会因表达不明确和传统思维的禁固让人才不敢轻易踏入,而转身入行的新人们又苦于行业的信息冲击而烦恼,新技术和项目内容的快速迭代需要专业授与,AI?起到专业导师和图书宝藏的身份。

技术分享和共创:通过检测和积累技术成果,记录项目的成功经验并将其转化为理念,持续生成和输出,形成一个能与个人进行互动交流的共创领域,未来?AI?将作为个人工作组织的增幅效果,提高对创造性认知的理解,拓展科技的维度。

总结

人工智能?AI?在科技层的落地应用上体现出了强大的爆发力,AI?在生产效率的提升上进一步促进了个人能力和边界的进步,Web3是个新的领域,未来?AI?在Web3的赛道中可能爆发出哪些现象级的科技,这是一个充满想象的场景,我们拭目以待!

来源:星球日报

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

大币网

[0:15ms0-4:313ms