AME:Web3 的阴暗面:去中心化如何助长 AI 偏见_Web AI

原文:venturebeat?

编译:DeFi之道,Kyle?

人工智能(AI)迅速改变了我们的生活和工作方式。与此同时,AI数据偏见带来的挑战已经走到了最前面。当我们走向Web3的未来时,我们自然会看到同时使用Web3和AI的创新产品、解决方案和服务。而且,虽然一些评论员认为去中心化技术可以解决数据偏见问题,但事实并非完成如此。

图片来源:由MazeAI生成

Web3市场规模仍然相对较小且难以量化,因为Web3生态系统仍处于发展的早期阶段,Web3的确切定义仍在不断发展。虽然2021年的Web3市场规模估计接近20亿美元,但各种分析师和研究公司报告称,预计复合年增长率(CAGR)约为45%,再加上Web3解决方案和消费者采用率的快速增长,到2030年,Web3市场的价值将达到800亿美元左右。

火必与Gala Games达成战略合作 共探Web3新机遇:3月31日消息,火必官方宣布与Gala Games在Web3生态系统开发方面建立战略合作伙伴关系。双方本次合作旨在共同投资并上线Gala Games生态内顶级项目,并将在生态建设、品牌联动、项目开发、社区共识等方面联手合作。

据悉,Gala Games基于以太坊提供了一个跨类型的Play to Earn加密货币及NFT的游戏生态系统。[2023/3/31 13:36:49]

虽然Web3正在快速增长,但该行业的现状与其他科技行业因素相结合是AI数据偏见走上错误道路的原因。

数据偏见、质量和数量之间的联系

AI系统依靠大量高质量数据来训练它们的算法。OpenAI的GPT-3在大量高质量数据上进行了训练。OpenAI并未透露用于训练的确切数据量,但估计在千亿字量级或更多。

万事达卡已提交加密和Web3安全相关商标申请:11月29日消息,美国专利商标局商标律师Mike Kondoudis发布推文称,万事达卡已提交加密和Web3安全相关商标申请,商标名为“MASTERCARD CRYPTO SECURE”,涵盖加密交易监控软件、提供加密货币信息以及风险评估服务。[2022/11/29 21:10:06]

数据经过过滤和预处理,以确保其质量高且与语言生成任务相关。OpenAI使用先进的机器学习(ML)技术在这个大型数据集上训练模型,使其能够学习单词和短语之间的模式和关系,并生成高质量的文本。

AI训练数据的质量对ML模型的性能有重大影响,数据集的大小也是决定模型泛化到新数据和任务能力的关键因素。但是,质量和数量都会对数据偏见产生重大影响,这也是事实。

Flamengo与MoonPay合作开展web3忠诚度计划:10月6日消息,巴西最大的体育特许经营权之一Flamengo周四宣布,它将通过与MoonPay的多年合作伙伴关系推出一系列web3产品。Flamengo将试图通过票务、营销和商品来帮助提高球迷在足球俱乐部的参与度。(The Block)[2022/10/6 18:41:11]

数据偏见的独特风险

AI中的数据偏见是一个重要问题,因为它可能在就业、信贷、住房和刑事司法等领域导致不公平、歧视和有害的结果。

2018年,亚马逊被迫废弃了一款显示出对女性有偏见的AI招聘工具。该工具接受了对过去10年期间提交给亚马逊的简历的培训,其中主要包括男性候选人,导致AI减少了包含“女性”和“女人”等词的简历。

CoinPayments任命网络安全专家Marshal Webb为CTO:数字货币支付处理商CoinPayments今天宣布任命网络安全专家Marshal Webb为首席技术官。(CNW)[2021/6/16 23:41:56]

2019年,研究人员发现,一种用于预测患者预后的商用AI算法对黑人患者存在偏见。该算法主要针对白人患者数据进行训练,导致其对黑人患者的假阳性率更高。

Web3解决方案的去中心化性质与AI相结合,带来独特的偏见风险。这种环境中数据的质量和可用性可能是一个挑战,这使得准确训练AI算法变得困难,这不仅是因为缺乏使用中的Web3解决方案,还因为缺乏有能力使用它们的人群。

我们可以从23andMe等公司收集的基因组数据中得出相似之处,这些数据对贫困和边缘化社区存在偏见。23andMe等DNA检测服务的成本、可用性和目标营销限制了来自低收入社区或生活在该服务未运营地区的个人获得这些服务的机会,这些地区往往是较贫穷、欠发达国家。

因此,这些公司收集的数据可能无法准确反映更广泛人群的基因组多样性,从而导致基因研究以及医疗保健和医学发展的潜在偏差。

这让我们想到了Web3增加AI数据偏见的另一个原因。

行业偏见和对道德的关注

Web3创业行业缺乏多样性是一个主要问题。截至2022年,女性占据了26.7%的技术职位。其中,56%是有色人种女性。科技行业的高管职位中女性比例更低。

在Web3中,这种不平衡加剧了。根据各种分析师的说法,只有不到5%的Web3初创公司拥有女性创始人。这种多样性的缺乏意味着AI数据偏见很可能被男性和白人创始人无意识地忽视为一个问题。

为了克服这些挑战,Web3行业必须在其数据源和团队中优先考虑多样性和包容性。此外,该行业需要改变为什么多样性、平等和包容是必要的故事。

从财务和可扩展性的角度来看,从不同角度设计的产品和服务更有可能为数十亿客户服务,而不是数百万客户,这使得那些拥有多元化团队的初创公司更有可能获得高回报和全球规模的能力。Web3行业还必须关注数据质量和准确性,确保用于训练AI算法的数据没有偏见。

Web3能否解决AI数据偏差问题?

应对这些挑战的一种解决方案是开发去中心化的数据市场,允许个人和组织之间安全、透明地交换数据。这有助于降低数据偏差的风险,因为它允许在训练AI算法时使用更广泛的数据。此外,可以利用区块链技术保证数据的透明性和准确性,使算法不产生偏见。

但是,最终,在主流受众使用Web3解决方案之前,我们将面临多年寻找广泛数据源的重大挑战。

虽然Web3和区块链继续出现在主流新闻中,但此类产品和服务最有可能吸引初创企业和技术社区的人们——我们知道这些社区缺乏多样性,但在全球市场中所占的份额相对较小。

很难估计在Web3初创公司工作的世界人口的百分比。近年来,该行业在美国创造了大约300万个工作岗位。如果将这一数字与美国总人口相比——并且不考虑失去的工作岗位——这个科技行业远不能代表适龄工作的公民。

在Web3解决方案变得更加主流并将其吸引力和使用范围扩大到那些对技术具有内在兴趣并变得负担得起并且足以被更广泛的人群使用之前,获得足够数量的高质量数据来训练AI系统仍然是一个重大障碍。业界现在必须采取措施解决这个问题。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

大币网

MATICSUI:探讨AI输出成果的著作权问题_COIN

引言:近年来,区块链、NFT、Web3.0、元宇宙等概念一次又一次的冲刷着普罗大众的认知,给人一种一只脚已经踏进未来的科技感,同时也给人一种被时代甩在后面的挫败感.

[0:9ms0-7:810ms