BTC:一文读懂a16z领投4300万美元的AGI算力市场协议Gensyn_LunaGens

作者:金色财经cryptonaitive

2023年6月12日,基于区块链的AGI算力市场协议Gensyn宣布完成4300万美元A轮融资,a16z领投,EdenBlock、CoinFund、Galaxy、ProtocolLabs等参投。

Gensyn是个什么项目?为何能拿到顶级VC巨额投资?金色财经带你一文读懂。

a16z:为何领投Gensyn4300万美元A轮融资

a16z发文解释了为何领投Gensyn4300万美元A轮融资。a16z表示,人工智能最近的进步令人难以置信,并且有拯救世界的力量。但是构建AI系统需要部署更大的计算能力来训练和推理当今最大、最强大的模型。这意味着大型科技公司在从人工智能中获取价值的竞争中比初创公司更具优势,这要归功于对计算能力的特权访问和大型数据中心的规模经济。为了在公平的竞争环境中竞争,初创公司需要能够负担得起地使用自己的大规模计算能力。

BTC跌破22900美元关口:火币全球站数据显示,BTC短线下跌,跌破22900美元关口,现报22899.64美元,日内涨幅达到1.53%,行情波动较大,请做好风险控制。[2020/12/19 15:47:51]

区块链作为一种新型计算机,其独特之处在于,开发人员可以编写代码,对代码在未来的行为方式做出坚定的承诺。区块链的这种无需许可的组件可以为算力的买卖双方创建一个市场——或任何其他类型的数字资源如数据或算法——在全球范围内无需中间商进行交易。

Gensyn,是一个基于区块链的AGI算力市场协议,将开发人员与解题者联系起来。通过利用世界各地闲置的、具有机器学习能力的长尾计算设备例如小型数据中心、个人游戏电脑、M1和M2Mac甚至是智能手机,Gensyn可以将可用计算能力提高10-100倍用于机器学习。

BTC重回8700美元上方:火币全球站数据显示,BTC已重回8700美元上方,现报8734.06美元,日内跌幅1.7%,行情波动较大,请做好风险控制。[2020/5/12]

AGI面临的问题:高度中心化

经过近半年的发展,市场普遍承认AGI是未来。但是AGI行业目前看起来高度垄断,国家之间是中美的贸易和人才战,公司之间是大型科技公司的游戏。因为AGI的三个关键资源目前高度中心化。

计算能力:越来越大和复杂的模型需要使用高算力的处理器训练。国家之间:中美之间的芯片战,美国一直在积极阻止中国获取高算力芯片。公司之间:产能不足,英伟达最新AI芯片全部被某些大客户购买,其他公司根本无法买到。在技术栈上:一些公司甚至创建了自己的深度学习专用硬件,例如谷歌的TPU集群。这些在深度学习方面的性能优于标准GPU,并且不出售,仅供出租。

当前BTC全网算力为122.25EH/s:金色财经报道,据BTC.com数据显示,当前BTC全网算力为122.25EH/s,目前比特币未确认交易笔数为25164笔。当前比特币挖矿难度为16.10T,距离难度调整还有6天19小时,预计下次难度上升至16.93T,上升5.11%。[2020/5/11]

知识:许多公开的突破都源于研究人员开发的新的大模型架构,但在底层知识产权和人才方面存在着一场战斗。比如,美国吸引了超过50%的中国AI人才,而利用这些人才开发大模型的大公司正越来越多地降低这项技术的可及性;OpenAI的GPT-3.5或者4名义上可以公开使用,但它位于API后面,只有Microsoft可以访问其源代码。

数据:AGI深度学习模型需要大量数据——包括标记的和未标记的——并且通常随着数据量的增加而改进。GPT-3接受了3000亿个单词的训练。标记数据尤为重要,训练AGI需要的数据集集中在一些大公司手中。比如一个冷知识:每次你解决reCaptcha访问网站时,你都在标记训练数据以改进谷歌地图。

去中心化AGI计算存在的困难

去中心化计算可以创造一个更便宜、更自由的基础来研究和开发人工智能。但去中心化AGI存在着工作验证难题,如何知道第三方已完成你请求的计算?

工作验证难题有两个因素:状态依赖,高计算费用。

状态依赖:神经网络中的每一层都连接到它之前的层中的所有节点。这意味着它需要前一层的状态。更糟的是,每一层的所有权重都由前一个时间步决定。因此,如果你想验证是否有人训练了一个模型——比如,通过在网络中选择一个随机点并查看你是否得到相同的状态——你需要一直训练模型直到那个点,这计算量非常大。

高计算费用:2020年GPT-3单次训练的成本约为1200万美元,比2019年GPT-2训练的估计值约43,000美元高出270倍以上。一般来说,最好的神经网络的模型复杂度目前每三个月翻一番。如果神经网络更便宜,和/或如果训练代表更少的模型开发过程,那么可能来自状态依赖的验证开销是可以接受的。

如果想降低深度学习训练的价格并去中心化控制权,需要一个系统来不信任地管理状态相关的验证,同时在开销和奖励那些贡献计算的人方面也很便宜。

Gensyn如何去中心化AGI计算

Gensyn协议将世界上所有的计算联合到一个全球机器学习超级集群中,任何人都可以随时使用。它通过结合两件事来实现以超大规模和低成本无需信任地训练神经网络:

1、创新的验证系统

有效解决任意规模神经网络训练中状态依赖问题的验证系统。该系统将模型训练检查点与终止于链上的概率检查相结合。它以无需信任的方式完成所有这些工作,并且开销与模型大小成线性比例。

根据GensynLitepaper,Gensyn主要通过三个概念解决验证问题:概率proof-of-learning、基于图的精确定位协议、Truebit式激励游戏

该系统主要由四个主要参与者:提交者、解题者、验证者和吹哨者。提交者:系统最终用户,提供将要计算的任务并为完成的工作单元付费;解题者:系统主要工作部分,执行模型训练并生成证明以供验证者检查;验证者:将非确定性训练过程链接到确定性线性计算、复制解题者证明的一部分并将距离与预期阈值进行比较;吹哨者:最后一道防线,检查验证者的工作并挑战以期获得累积奖金。

2、新的算力供应

利用未充分利用和未充分利用/未优化的计算设备资源。这些设备包括从目前未使用的游戏GPU到之前以太坊PoW时代的GPU矿机。而且该协议的去中心化意味着它最终将由社区多数管理,未经社区同意不能“关闭”;与web2对应物不同,这使其具有抗审查性。

大规模+低成本:Gensyn协议提供了与数据中心拥有的GPU相似的成本,其规模可以超过AWS

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

大币网

[0:15ms0-3:438ms