BIT:不看到数据却能进行计算?一文了解安全多方计算_ITF

今天,数据可以用来分析复杂问题,提供解决方案,甚至解决无法回答的问题。但是,当涉及到利用数据为公众服务时,数据共享和数据保护之间往往存在着许多矛盾。而安全多方计算(MPC)如何在不泄露隐私数据的情况下实现数据协作分析?又将为数据的秘密共享带来了哪些新的机遇?

区块链百科No.35:安全多方计算

两个百万富翁在街头邂逅,他们都想比比看谁更有钱。但是出于隐私,谁都不想让对方知道自己到底拥有多少财富。在不借助第三方的情况下,如何得出谁的财富更多呢?

微软总裁:不看好金融科技公司发行数字货币:微软总裁Brad Smith今日表示,他并不看好金融科技公司发行数字货币,这应该是政府扮演的角色。Smith称,货币供应该由一个对公众负责、真正只考虑公众利益的实体来管理,换言之,就是各国政府。我自己并不热衷于鼓励、要求或希望我们参与货币发行。(新浪科技)[2021/3/24 19:14:46]

这就是著名的“姚式百万富翁问题”。1980年代,姚期智院士在其论文中提出:Alice有一个私人数字a, Bob有一个私人数字b,双方的目标是解不等式a是否≤b。或者更严格来说,除了得到不等式了a≤b或a>b外,不会得出任何与a或b相关的其他信息。

曾鸣:我没有投任何区块链项目,并不意味着我不看好:阿里巴巴集团学术委员会主席曾鸣昨晚表示:我没有投资过区块链项目。有两个核心原因:第一,投资本身是件非常专业的事情,我没有时间精力也没有能力去做投资,所以不仅仅是区块链,我基本上也没有做过其他项目的投资;第二,对于区块链项目,现在的投资特别像早期的风险投资,也需要有特别的技能和风格,我个人的风格属于长考型的,早期项目反而不适合我。所以我个人目前没有投任何区块链项目,但并不意味着我对区块链项目不看好。[2018/3/2]

诺贝尔得奖者发声明称不看好比特币:据报道,获得诺贝尔奖的Shiller发表声明称:比特币最终将重现1929年的美股崩盘场景。[2017/11/30]

姚期智

计算机学者,2000年图灵奖获得者(唯一获得该奖的华人学者),研究方向包括计算理论及其在密码学和量子计算中的应用。

在这个经典问题之下,诞生了「安全多方计算」(Secure Multiparty Computation,以下简称MPC)这门密码学分支。MPC技术能够在不泄露数据的情况下,联合多方数据进行计算并得到明文结果,最终实现数据的所有权和数据使用权的分离。

在此之后,该领域出现了一系列基础结果,用来解决分布式计算问题,同时保证输入信息的隐私性和安全性。

安全多方计算(MPC)可以理解为一种加密协议,它将计算分布在多方之间,使得任何一方在看不到其他方输入数据的情况下,开展安全且私密的联合计算。

值得注意的是,隐私和安全是有区别的。

安全问题,就像是信用卡出现安全漏洞被盗了钱,人们可以通过一些措施来阻止它并要求退款。而隐私问题,在于当个人隐私受到侵犯时,我们无法采取同样的措施。隐私信息一旦被公开,就无法再次收回。因此,需要设计一种安全协议,在不泄露隐私的前提实现共享数据的价值。

通过MPC协议,各方数据可经由编码后发送至多个服务器进行联合计算,并保证数据的隐私性。简而言之,MPC可以应用于任何涉及多方机密数据的问题。

为了说明这个概念,我们以计算平均工资来举例。某公司的A、B、C三位员工想计算一下他们的平均工资,但在这个过程中,每个人都不想让其他员工知道自己的薪资信息。

假设A的工资是10万元,可通过加密方式将其随机分为三部分:2万、3万和5万,A自己保留一部分(2万),并将其他信息提供给B(3万)和C(4万)。B和C的工资也按照同样的流程完成秘密分享(见下表)。这样的秘密分享完成后,每个人都持有三份工资份额。

当三个工资份额在参与者之间秘密共享时,他们对彼此的工资一无所知,毕竟每个数据片段本身不提供任何有用的信息。然而,当这些数字被加起来时,秘密共享提供了有价值的信息。每个部分结果经过重新集合相加再除以总人数时,便实现了在不披露员工各自薪资信息的情况下,得出平均收入水平。

实际上,安全多方计算已不再是数据科学家的梦想,而是一个被证明的事实。人们由此可对加密数据进行计算,从而更好地检测金融欺诈,解决交通拥堵,预测疾病以及更多……

- END -

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

大币网

[0:15ms0-5:825ms