IGC:Web3时代的AI:探索区块链和人工智能的无限潜力_AIG

随着Chat-GPT的横空出世, 我们进入了AIGC带来的颠覆性创新的时代。

AIGC(AI Generated Content),被认为是继UGC、PGC之后的新型内容生产方式,AI绘画、AI写作等都属于AIGC的分支,Chat-GPT就是一种自然语言处理的大AI语言模型,AI模型作为AIGC的具体形式,在训练过程和推理过程中有哪些关键要素呢?

要素一:算力

高质量、多样性的数据是训练AI模型的基础,算力为模型训练提供了驱动能力。

在算力提供方面,对于AI模型训练阶段,算力用于执行大规模数据集上的反向传播、参数更新和模型优化等任务。较高的算力可以加快训练过程的速度,使得模型能够更快地收敛和学习数据的特征。 对于AI模型推理阶段,算力用于将已训练好的模型应用于新的数据实例进行预测和推断。在实时应用中,算力的高低决定了模型能够处理的请求量和响应速度。

SPACE ID与ENS合作实现.bnb.eth和.eth.bnb的相互解析:金色财经报道,Web3域名和身份平台SPACE ID与以太坊域名服务ENS达成合作,通过ERC-3668(CCIP读取)将.bnb域名引入以太坊网络,实现.bnb.eth和.eth.bnb的相互解析。在MetaMask上输入xxx.bnb.eth,会在以太坊上解析为用户的BNB Chain地址。[2023/5/5 14:44:15]

许多复杂的AI算法需要大量的计算资源。传统AI的发展受限于硬件设备的性能和计算能力。尤其是在处理大规模数据集或进行高度复杂的模型训练时,需要更强大的计算能力。

目前,市面上对智能算力的共享还缺乏成熟的产品和方案,传统的算力市场引入个人终端等第三方社会闲散算力,而算力服务运营者不具备对节点的有效掌控能力,并不能保证算力节点自身的安全与可信,使得安全防护的广度和难度大幅提升。

Beosin:Avalanche链上Platypus项目损失850万美元攻击事件解析:2月17日,据区块链安全审计公司Beosin旗下Beosin EagleEye安全风险监控、 预警与阻断平台监测显示,Avalanche链上的Platypus项目合约遭受闪电贷攻击,Beosin安全团队分析发现攻击者首先通过闪电贷借出4400万USDC之后调用Platypus Finance合约的deposit函数质押,该函数会为攻击者铸造等量的LP-USDC,随后攻击者再把所有LP-USDC质押进MasterPlatypusV4合约的4号池子当中,然后调用positionView函数利用_borrowLimitUSP函数计算出可借贷余额,_borrowLimitUSP函数会返回攻击者在MasterPlatypusV4中质押物品的价值的百分比作为可借贷上限,利用该返回值通过borrow函数铸造了大量USP(获利点),由于攻击者自身存在利用LP-USDC借贷的大量债务(USP),那么在正常逻辑下是不应该能提取出质押品的,但是MasterPlatypusV4合约的emergencyWithdraw函数检查机制存在问题,仅检测了用户的借贷额是否超过该用户的borrowLimitUSP(借贷上限)而没有检查用户是否归还债务的情况下,使攻击者成功提取出了质押品(4400万LP-USDC)。归还4400万USDC闪电贷后, 攻击者还剩余41,794,533USP,随后攻击者将获利的USP兑换为价值8,522,926美元的各类稳定币。[2023/2/17 12:12:32]

数据基于隐私保护的数据共享是AIGC建模的重要支撑。

WalletConnect 发布钱包开源解决方案 Web3Modal v2.0 版本,新增 ENS 域名解析等功能:9月17日消息,Web3 基础设施 WalletConnect 发布钱包开源解决方案Web3Modal v2.0版本,新功能包括可自定义的UI、支持上百个钱包、最终用户登陆、可定制的条款和条件、ENS域名解析,未来几周内也计划添加和增强更多功能,包括支持React和Vanilla等多种框架、为账户地址和实时余额等功能预建组件、支持非EVM链等。[2022/9/17 7:02:59]

在数据提供方面,AIGC的模型训练需要使用大量的数据来获得良好的性能,提升模型的推理能力和准确性。以ChatGPT为例,GPT的训练使用了数百亿个令牌(tokens)的数据。作为一个大型的AI语言模型,GPT的训练数据包括了互联网上广泛的文本来源,包括网页、书籍、文章、论文和其他公开可用的文本资源。这些数据覆盖了多个领域和主题,使得模型能够具备广泛的知识和语言理解能力。

分析 | 资金流入榜首DASH盘面解析:在过去24小时中,DASH在各主流币中非常强势,资金净流入31.97亿人民币。从图中可以看出,DASH目前4小时走势处于上升楔形三角中,底部不断抬高,100均线上穿长期200均线,表明近期压力位将会上移,并且MA100和MA 200将会对币价起到支撑作用,不过目前两均线的缺口在收窄,说明近期上冲动能在逐步减弱,RSI显示进入超买区域,短期有回撤蓄势的需求,上方压力95,下方支撑89,收盘若站稳89上方,还会有上涨空间,反之币价可能回撤至三角底部$75附近寻求支撑。利好消息面,区块链支付服务PolisPay宣布与Dash合作,将支持其万事达卡借记卡。[2019/3/13]

总而言之,训练一个AI大模型需要海量的数据,单一企业的内部数据往往不足以满足需求,因此这个过程中需要数据共享,然而全球数据量在飞速增长的同时,数据共享带来的隐私泄露严重影响了数据价值的充分利用。IBM Security2022年7月份的报告显示,2021 年 3 月至 2022 年 3 月期间全球 550 家企业出现的数据泄露事件,平均一起数据泄露产生的损失达到 440 万美元,相比较2020年损失增加了13%,因此如何在保证数据隐私安全的前提下,进行数据流通和价值挖掘,并服务于AIGC技术的成长,成为业内日益关注的一个话题。

Web3作为建立在区块链和去中心化技术之上的新一代互联网,具有更大的去中心化、开放性和透明度。当AI结合Web3时,它可以获得许多与传统AI不同的优势。

Web3的去中心化特性使得全球范围内的计算资源能够被整合和共享。这为AI模型训练和推理提供了更大规模的计算能力。传统AI模型训练通常依赖于单一的计算设备或云服务提供商,而结合Web3可以利用全球网络中的分布式计算资源,提供更高效和弹性的算力支持。

Web3的核心概念之一是去中心化和用户掌握数据的权力。结合AI,Web3可以为用户提供更多控制权和数据共享的机会,使其能够以更加隐私安全的方式参与AI模型的训练和数据共享。

Web3的智能合约和分布式计算平台可以促进AI模型的开发和部署。智能合约可以提供去中心化的方式来管理和验证模型的训练过程,同时分布式计算平台可以利用全球网络中的计算资源来加速模型的训练和推理。

Web3可以通过激励机制和去中心化的数据市场,促使用户提供更多高质量、多样性的数据,从而改善传统AI所面临的数据限制问题。

Waterwheel的算力网络结合TEE技术和区块链技术构建一个可信、公开、高效的算力共享平台,具备全网算力节点和区块链节点的统筹盘点能力,能够纳管全球各地的闲置算力。

Waterwheel是基于区块链和隐私计算打造去中心化的数据共享平台,建设覆盖全球的数据资产网络,支持数据贡献者个人进行数据登记和参与数据众筹任务,并通过隐私计算技术解决数据流通过程中数据泄漏的安全问题,在保证数据安全隐私的前提下,为数据贡献者带来价值收益。

传统的AIGC同样缺乏隐私保护,用户的独特创意通过prompt输入绝大部分会被直接公开,不同的AI模型提供和计费方式,也使用户付出了更高的成本,由于AIGC的创作过程主要由AI模型完成,创作者很难通过传统的版权交易方式获得合理的收益。

Waterwheel融合区块链、隐私计算、AI技术,打造安全可信的模型训练平台,通过使用隐私计算TEE技术的远程证明和隐私环境,解决模型训练方、数据提供方和算力提供方之间的互相不信任和数据泄漏风险的问题,保证模型训练的全流程中,数据和模型处于“可用不可见”的状态,帮助AI模型训练方安全合规获取更多的数据,同时将AI模型托管在隐私环境中,保证模型的安全和隐私性。

期待看到更多Web3.0平台推动AI行业的发展和应用!

金色早8点

Odaily星球日报

金色财经

Block unicorn

DAOrayaki

曼昆区块链法律

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

大币网

币安下载BIN:美国SEC前官员:为什么说美国司法部正对币安提起刑事诉讼_bingocoin

作者:John Reed Stark,美国SEC互联网执法部门前主任;翻译:金色财经0xxz 我在美国证券交易委员会执法部门工作了近 20 年,并管理了许多美国证券交易委员会和司法部的联合起诉。恕我直言,一连串的指标显示,美国司法部将提交或已经提交与币安相关的刑事起诉书。 涉及伪装金融资产,以便在不被发现产生它们的非法活动的情况下使用它们。

SOLARP:如何从山寨币轧空行情中获利?_PRE

作者:Jonas@Foresight Ventures 一、何为轧空交易? 做空可以让交易者从资产价格下跌中获利。这是对冲现有持仓或看跌市场行情的常见方式。但是做空交易有时会蕴含很高的风险.

[0:0ms0-10:121ms