GHT:以太坊2.0主网客户端性能比较:Lighthouse、Lodestar等_ETHplode

基于最新的性能指标比较以太坊2.0主网上所有可用的客户端。

2020年12月以太坊2.0信标链发布之后,现在是时候介绍以及比较现有的协议实现了。本文作为该系列文章的第一部分,将按照字母排序比较5个主要客户端的信标链节点性能和资源利用率。

Lighthouse(Rust,SigmaPrime)

Lodestar(TypeScript,ChainSafeSystems)

Nimbus(Nim,Status)

Prysm(Go,PrysmaticLabs)

Teku(Java,ConsenSysQuorum)

以太坊2.0主网基础设施由三个主要组件组成:

信标链是PoS(权益证明)链。当前的以太坊1.x链(共识为PoW)与以太坊2.0合并之后,信标链将成为保障以太坊安全的主干网。

验证就好比PoS共识中的矿工。所有人都可以质押32ETH成为验证者,有权提议新区块、对区块敲定进行投票,然后获得奖励。

数据:当前比特币市值占比为42.18%:金色财经消息,据CoinMarketCap最新数据显示,当前比特币市值占比为42.18%,以太坊市值占比为14.87%。[2022/7/3 1:48:05]

罚没者正监视验证者是否作恶,以防攻击事件发生。任何一名验证者违反规则,都会受到惩罚并被移出网络。

需要注意的是,本文主要关注第一点,信标链是以太坊2.0网络的基础。研究人员可以在Github上找到所有相关的脚本、数据和绘图,以便进一步分析:

>byz-f/eth2-bench-mainnet

本文将重点列出这些发现

同步指标

第一个也是最令人兴奋的问题:同步以太坊2.0信标链节点信息需要多长时间,结果见下图。

在上表中,通过比较客户端同步相同的slot需要花多少时间来比较其同步进程。在评选结果之前(虽然这不是本文的讨论范围),关于该图表我们需要知道三件事。

1.?Prysm(紫色线)有个特殊的地方是,它会连接以太坊1.x节点,从验证者信息登记处获取所有ETH存款,然后从Eth1状态下构建Eth2创世。虽然从安全的角度来看,这一特性蛮有用的,因为用户不必信任Prysm的开发者以获得正确的创世状态,但是这一过程需要些时间。因此,客户端启动与同步启动的时间有明显的偏移。(#8209)。

OKB跌破4.6美元关口 日内跌幅为2.13%:OKEx数据显示,OKB短线下跌,跌破4.6美元关口,现报4.552美元,日内跌幅达到2.13%,行情波动较大,请做好风险控制。[2020/11/9 12:07:39]

2.?由于出现JavaScript堆内存不足的问题,在基准测试时Lodestar(灰色线)出现了崩溃(#2005)。但是,它在10秒后由脚本自动重启。

3.不可见:在初始同步时,Loderstar还没有完全验证所有签名(#1217)。因此,目前尚不清楚Loderstar与其他客户端的比较情况。

上面的图表中,我们可以看到Lighthouse(橙色线)整体表现出色,Prysm、Teku(绿色线)和Nimbus(蓝色线)在保持速度方面表现出色。但是,让我们再来看看下面的图表:

在这个图表中,我们把Prysm客户端启动和同步启动(即第一个信标链区块产生)之间的时间偏移删去。那么可以看出,单纯比较同步速度的话,Prysm的表现略优于Lighthouse,不到两个小时就能同步完成,而Lighthouse需要两个半小时。Teku和Nimbus大概需要五个小时。

24小时合约市场爆仓超2.5亿美元 BTC合约爆仓2.14亿美元:据合约帝行情统计报告显示:过去24小时合约市场全网总计爆仓2.5亿美元,爆仓人数16915人。其中Huobi 爆仓3178万美元,OKEx爆仓6723万美元,BitMEX爆仓8121万美元,Binance爆仓7067万美元。爆仓金额前三的币种是BTC2.14亿美元,ETH1182万美元,EOS963万美元。[2020/4/3]

值得注意的是,Eth2TypeScript实现(Lodestar使用的语言)并不是仅为了成为运行一个全信标链或者验证者节点的首选客户端。相反,Lodestar将为以太坊2.0去中心化应用的所有web、浏览器和基于插件的组件提供基础设施。

假设我们知道了客户端的信标头区块当前所在的slot高度,并且可以查看在这60秒之前区块头的高度的话,我们就可以通过展示各客户端每秒同步的slot数(用点表示),来计算过去60秒的移动平均值以比较各客户端的同步速度。移动平均值超过10分钟的则用实线表示。

结果与前一个图表一致。尽管Prysm因为要花时间获取Eth1-状态,它仍是同步速度最快的客户端,每秒同步60slots。Lighthouse紧跟其后,每秒同步46slots。稍显落后的是Teku(23/秒)和Nimbus(22/秒)。

然而什么是slot呢?在传统的区块链如比特币和Eth1链中,要么有区块要么没有。那么当比较这些链上的客户端性能时,我们会以块数/秒为单位来比较其同步速度。这跟以slot数/秒为单位有何不同呢?

在以太坊2.0中,每12秒总有一个指定的slot。如果验证者被分配到一个slot中提议区块,该slot便有一个区块。然而,如果验证者错过该slot,那么便是个空slot(没有区块),但尽管如此,slot的计数将继续进行。因此,在以太坊2.0中,我们以slots/秒为单位计算同步速度。

在这个图表中,我们把(时间)这一变量删去,横坐标为已同步的slot数,并把上一个图表中的同步速度映射到该图表中。所有客户端都显示一个趋势:随着slot的增加同步速度下降。由于该数据是在以太坊2.0主网上搜集的,我们知道有一条验证者队列正排队等候进入2.0网络。在撰写本文时,等候队列上有13_458名验证者,按照每天新增900名验证者的速度来算,需要等待将近15天。

了解了以太坊2.0主网验证者数量呈线性增长之后,我们可以假设活跃验证者集的规模变大使得同步速度减缓。

计算资源指标

在上半部分中,我们仅分析了同步指标,选出同步最快的客户端。但是哪个客户端在资源利用方面快且高效呢?

上面的图表中,随着同步slot的数量增加,比较各客户端的数据库容量。值得注意的是,关于完全同步主网节点(420_000slots),Lodestar的占用空间最小,总共只有1.49GiB。Lighthouse(2.98GiB)和Prysm(3.16GiB)的结果也不错。

我们知道Eth1节点存储完整的区块历史数据。尽管如此,Eth1节点还是移除了历史状态以最小化数据库所需的磁盘空间。Eth2节点与这个概念相当。在磁盘上储存所有块的同时,他们会删除最终状态。两者的主要区别为:为了方便起见,应将历史状态存储于时段边界中(epochboundaries)。目前,Nimbus每32个epoch在时段边界存储状态,然而Lodestar每1024个epoch将状态记录在磁盘中。在图中可以清楚地看出差异。

该图表相同,但是绘制了同步期间每个客户端的常驻内存集的大小。从图中得出,Nimbus客户端非常高效,在信标链主网的整个处理过程仅需要约1GiBRAM。紧接其后的是Lighthouse和Lodestar,均略低于3GiB。

注意:Java分配给Teku的堆外内存不在客户端开发者的控制范围之内。JVM对可用内存的消耗量特别大。Teku的指标结果在可用内存总量不同的情况下差异十分大。

最后但同样重要的一点是,让我们看一下CPU的利用率。在上面图表中可以看到客户端之间的一些有趣差异。

区块链属于一种高度分层的数据结构。同步区块链数据、验证区块以及计算最新状态,大部分工作都是按序列进行的。因此,客户端面临的挑战便是尽可能地使该进程平行化。图表显示的结果与同步速度指标相当,Prysm和Lighthouse领先(数值更高意味着更加有效),而Teku保持良好。

FAQ

Q:文章不错,但请问为什么你没有比较流量指标呢?

A:我有比较,只是没有对所有指标比较都进行评论。你可以在Github上找到没有进行注释的点对点、流量指标,想要进一步研究的话访问:eth2-bench-mainnet/doc/00-plots-uncommented.md

Q:你个人来说推荐哪个客户端?

A:这个问题很难回答。靠感觉走的话,我选择Lighthouse,我觉得它的总体用户体验、性能、功能以及工具可用性都很好。然而,Prysm仍是最成熟并且是目前最快的客户端。Teku的使用体验也很好,我认为所有客户端都是产品级别的。

Q:信标链数据库大小会超过1TiB吗?

不,首先,与Eth1相比,信标链本身相对较小。驱动数据库大小的主要因素是信标状态。然而,与Eth1相比,Eth2并不需要将所有状态存储在磁盘中,因为用户总是可以从本地运行的区块中重建任何状态。

除此之外,PoS有敲定这一工序,而PoW没有(reorgs,51%攻击)。一旦区块被敲定,该区块永远不会被篡改。敲定的意思是,将来客户端不用再从创世开始同步链的数据,而是获取最后敲定的epoch的最新链头的数据。

原文链接:

https://dev.to/q9/ethereum-2-0-mainnet-clients-3and

来源|dev.to/q9

作者|?AfriSchoedon

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

大币网

[0:6ms0-4:306ms