DODO:半个世纪已经过去,算法效率提升有多快?-ODAILY_DODO价格

过去半个世纪,集成电路产业在摩尔定律的指引下飞速发展,算法效率一直保持着大跨度提升。2018年世界上最快的计算机IBMSummit比1945年世界第一台电子计算机ENIAC计算速度提高了近30万亿倍。

然而,随着摩尔定律接近物理极限,芯片研发和生产成本大幅上升,未来依靠算力提升计算性能的空间有限。靠提升计算机硬件性能可能越发难以满足海量计算的需要,未来的解决之道在于提升算法的效率。

MIT的这篇新论文总结了过去80年来,算法效率的提升究竟有多快。

提起算法,它有点像计算机的父母,它会告诉计算机如何理解信息,而计算机反过来可以从算法中获得有用的东西。

算法的效率越高,计算机要做的工作就越少。对于计算机硬件的所有技术进步,以及备受争议的摩尔定律的寿命问题来说,计算机硬件的性能只是问题的一方面。

波卡生态身份聚合协议Litentry赢得第15轮波卡平行链插槽拍卖:金色财经消息,波卡生态身份聚合协议Litentry以锁定超94万DOT赢得第15轮波卡平行链插槽拍卖。[2022/4/25 14:47:29]

而问题另一方面则在硬件之外:算法的效率问题。如果算法的效率提升了,对同一计算任务需要的算力就会降低。

虽然算法效率问题可能不太受关注,但你是否注意到,经常使用的搜索引擎是否突然变快了十分之一,而在大型数据集中活动,就感觉就像在泥泞中跋涉一样艰难缓慢。

这些都与算法效率有关。

近日,麻省理工学院计算机科学与人工智能实验室(CSAIL)的科学家提出疑问:算法效率的提升速度到底有多快?

波卡生态概念板块今日平均涨幅为3.67%:金色财经行情显示,波卡生态概念板块今日平均涨幅为3.67%。26个币种中21个上涨,5个下跌,其中领涨币种为:POLY(+18.70%)、ANKR(+17.05%)、CELR(+16.58%)。领跌币种为:INSTAR(-29.01%)、XOR(-25.83%)、EDG(-18.17%)。[2021/4/8 19:59:33]

关于这个问题,现有数据大部分是叙事性的,其中很大一部分是面向特定算法的案例研究,再把这些研究结果加以推广。

面对实证研究数据的不足,研究团队主要利用了来自57部教科书和1110多篇研究论文的数据,以追溯算法效率提升的历史。

其中有些论文的结论中直接给出了新的算法有多高效,有的论文则需要作者使用“伪代码”进行重构。

波卡生态概念板块今日平均涨幅为1.64%:金色财经行情显示,波卡生态概念板块今日平均涨幅为1.64%。26个币种中10个上涨,16个下跌,其中领涨币种为:CELR(+40.36%)、OM(+31.88%)、CHI(+28.36%)。领跌币种为:AR(-14.50%)、PCX(-13.10%)、KTON(-10.79%)。[2021/3/15 18:46:58]

研究人员总共研究了113个“算法系”,即解决计算机科学教科书中最重要的同一问题的算法集。他们对每个算法族的历史进行了回顾,跟踪每次针对某一问题提出的新算法,并特别注意更高效的算法。

图1算法发现和改进。(a)每十年发现的新算法系的数量。(b)已知算法系的比例每十年都有所提高。(c)首次发现时算法系的渐近时间复杂度分类。(d)同一时间复杂度的算法转换到另一个时间复杂度的每年平均概率。在和中“>n3”的时间复杂度表示超过多项式级,但不到指数级。

波卡生态概念板块今日平均涨幅为1.98%:金色财经行情显示,波卡生态概念板块今日平均涨幅为1.98%。26个币种中18个上涨,8个下跌,其中领涨币种为:KTON(+15.30%)、AKRO(+12.06%)、OAX(+7.83%)。领跌币种为:EDG(-11.53%)、INSTAR(-9.64%)、ANKR(-3.35%)。[2020/12/3 23:01:22]

最早的算法系可追溯到上世纪40年代,每个算法系平均有8个算法,按时间顺序效率逐步提升。为了共享这一发现,团队还创建了“算法维基”页面。

研究人员绘制了图表,标识这些算法族效率提升的速度,重点关注算法分析最多的特征——这些特征往往决定了解决问题的速度有多快。

波卡生态概念板块今日平均跌幅为0.23%:金色财经行情显示,波卡生态概念板块今日平均跌幅为0.23%。26个币种中13个上涨,13个下跌,其中领涨币种为:PCX(+13.44%)、DOCK(+10.54%)、CELR(+6.08%)。领跌币种为:CHI(-18.51%)、KLP(-18.22%)、INSTAR(-5.88%)。[2020/11/21 21:36:43]

图2算法系的相对效率提升,使用渐近时间复杂度的变化计算。参考线是SPECInt基准性能。(a)与该系列中的第一个算法相比,四个算法系的历史改进。(b)算法改进对“最近邻搜索”算法系列的输入大小(n)的敏感度。为了便于比较算法改进效果随时间的变化,在图(b)中将算法系和硬件基准的起始时间段对齐。

结果显示,变数很大,但也发现了关于计算机科学变革性算法效率提升的重要信息。即:

1、对于大型计算问题,43%的算法系的效率提升带来的收益,不低于摩尔定律带来的收益。

2、在14%的问题中,算法效率提升的收益远超硬件性能提升的收益。

3、对于大数据问题,算法效率提升收益特别大,因此近年来,这一效果与摩尔定律相比越来越明显。

当算法系从指数复杂度过渡到多项式复杂度时,情况出现了最大的变化。

所谓指数复杂度算法,就像一个人猜密码锁的密码一样。如果密码盘上只有一位数,那么任务很简单。如果像自行车锁一样,表盘是4位数,估计你的自行车很难有人偷得走,但仍然可以一个个试。如果是表盘是50位的,就几乎不可能破解了,需要的步骤太多了。

图3基于渐近时间复杂度计算的110个算法系效率提升的年平均速度分布,其中问题规模为:(a)n=1000,(b)n=100万,(c)n=10亿。硬件性能提升线表示从1978年到2017年,SPECInt基准性能的平均年增长率

这类问题也是计算机面对的难题,随着问题的规模越来越大,很快就会超过计算机的处理能力,这个问题光靠摩尔定律是解决不了的。

解决之道在于找到多项式复杂度的算法。

研究人员表示,随着摩尔定律终结这个话题越来越多地被提及,我们需要将未来的解决方案的重点放在算法的效率提升上。

图4前导常数在算法性能提升中的重要性评价

研究结果表明,从历史上看,算法效率的提升带来的收益是巨大的。不过二者之间存在着频度的差异,摩尔定律带来的提升是平滑而缓慢的,而算法效率的提升是阶梯式的跃进,但出现没那么频繁。

本文通讯作者尼尔·汤普森说:

这是业界第一篇说明算法效率提升速度的论文。通过我们的分析,可以得出算法改进后,使用同样的算力可以完成多少任务。

随着问题的规模不断增大,比如达到数十亿或数万亿个数据点,算法效率的提升带来的收益,比硬件性能的提升更重要,而且重要得多。

在我们开始逐步为算力不足发愁的时代,在摩尔定律越来越显出疲态的今天,这一发现可能为未来解决超大型计算问题开辟一条新的思路。

参考链接:

https://news.mit.edu/2021/how-quickly-do-algorithms-improve-0920

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9540991

编辑:星际视界Sue

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

大币网

[0:0ms0-4:516ms